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Abstract. Least-squares finite element methods are an attractive class of methods for
the numerical solution of partial differential equations. They are motivated by the desire
to recover, in general settings, the advantageous features of Rayleigh-Ritz methods such
as the avoidance of discrete compatibility conditions and the production of symmetric
and positive definite discrete systems. The methods are based on the minimization of
convex functionals that are constructed from equation residuals. This paper focuses
on theoretical and practical aspects of least-square finite element methods and includes
discussions of what issues enter into their construction, analysis, and performance. It
also includes a discussion of some open problems.
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1. Introduction

Finite element methods (FEMs) for the approximate numerical solution of partial
differential equations (PDEs) were first developed and analyzed for problems in
linear elasticity and other settings for which solutions can be characterized as (un-
constrained) minimizers of convex, quadratic functionals on infinite-dimensional
Hilbert spaces [47]. A Rayleigh-Ritz approximation of such solutions is defined by
minimizing the functional over a family of finite-dimensional subspaces. An FEM
results when these spaces consist of piecewise polynomial functions defined with
respect to a family of grids. When applied to problems such as linear elasticity
or the Poisson equation, the Rayleigh-Ritz setting gives rise to FEMs with several
advantageous features that led to their great success and popularity:

1. general regions and boundary conditions are relatively easy to treat in a
systematic manner;

2. the conformity1 of the finite element spaces suffices to guarantee the sta-
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bility and optimal accuracy2 of the approximate solutions;
3. all variables can be approximated using a single type of finite element

space, e.g., the same degree piecewise polynomials defined with respect
to a same grid;

4. the resulting linear systems are
a) sparse; b) symmetric; c) positive definite.

The success of FEMs in the Rayleigh-Ritz setting quickly led both engineers
and mathematicians to apply and analyze FEMs in other settings, motivated by
the fact that properties 1 and 4a are retained for all FEMs.3 For example, mixed
FEMs arose from minimization problems constrained by PDEs such as the Stokes
problem; the Lagrange multiplier rule was applied to enforce the constraints, result-
ing in saddle-point problems [19]. In this setting, the only other property retained
from the Rayleigh-Ritz setting is 4b. More generally, Galerkin FEMs can, in prin-
ciple, be defined for any PDE by forcing the residual of the PDE (posed in a weak,
variational formulation) to be orthogonal to the finite element subspace [3]. In this
general setting, one usually loses all the features of the Rayleigh-Ritz setting other
than 1 and 4a. Using the same formalisms, Galerkin FEMs were even applied to
nonlinear problems such as the Navier-Stokes equations [34]. It is a testament to
the importance of advantage 1 that despite the loss of other advantages, mixed and
Galerkin FEMs are in widespread use and have also been extensively analyzed.4

Not surprisingly, despite the success of mixed and Galerkin FEMs in general
settings, there has been substantial interest and effort devoted to developing finite
element approaches that recover at least some of the advantages of the Rayleigh-
Ritz setting. Notable among these efforts have been penalty and stabilized FEMs,
e.g., for the Stokes problem, stabilized FEMs [4–6, 12, 15, 29, 30, 36, 37, 45] recover
advantages 2 and 3 but fail to recover advantage 4c and often lose advantage 4b.

Least-squares finite element methods (LSFEMs) can be viewed as another at-
tempt at retaining the advantages of the Rayleigh-Ritz setting even for much more
general problems. In fact, they offer the possibility of, in principle, retaining all of
the advantages of that setting for practically any PDE problem. In §2, we show
how this is possible. However, this is not the whole story. Any FEM, including a
LSFEM, must also meet additional practicality criteria:

A. bases for conforming subspaces are easily constructed;
B. linear systems are easily assembled;
C. linear systems are relatively well conditioned.

In judging whether or not a LSFEM meets theses criteria, we will measure them
up against Galerkin FEMs for the Poisson equation; in particular, we will ask
the questions: can we use standard, piecewise polynomial spaces that are merely
continuous and for which bases are easily constructed? can the assembly of the

2An approximate solution is referred to as being optimally accurate if the corresponding error
is bounded by a constant times the error of the best approximation.

3These properties follow from the way finite element spaces are constructed, e.g., based on
grids and choosing basis functions of compact support.

4It should be noted that in the general settings for which FEMs lose many of the advantages
they posses in the Rayleigh-Ritz setting, they do not suffer from any disadvantages compared to
other discretization methods such as finite difference, finite volume, and spectral methods.
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linear systems be accomplished by merely applying quadrature rules to integrals?
and, are the condition number of the linear systems of5 O(h−2)? Unfortunately,
naively defined LSFEMs often fail to meet one or more of the practicality criteria.

LSFEMs possess two additional advantageous features that other FEMs, even
in the Rayleigh-Ritz setting, do not possess. First, least-square functionals pro-
vide an easily computable residual error indicator that can be used for adapting
grids. Second, the treatment of general boundary conditions, including nonhomo-
geneous ones, is greatly facilitated because boundary condition residuals can be
incorporated into the least-square functional.

2. The most straightforward LSFEM

Let Ω denote a bounded domain in <n, n = 2 or 3, with boundary Γ. Consider
the problem

Lu = f in Ω and Ru = g on Γ , (1)

where L is a linear differential operator and R is a linear boundary operator. We
assume that the problem (1) is well posed so that there exists a solution Hilbert
space S, data Hilbert spaces HΩ and HΓ, and positive constants α1 and α2 such
that

α1‖u‖2S ≤ ‖Lu‖2HΩ
+ ‖Ru‖2HΓ

≤ α2‖u‖2S ∀u ∈ S . (2)

Then, consider the least-squares functional6

J(u; f, g) = ‖Lu− f‖2HΩ
+ ‖Ru− g‖2HΓ

(3)

and the unconstrained minimization problem

min
u∈S

J(u; f, g) . (4)

Note that the functional (3) measures the residuals of the components of the system
(1) using the data space norms HΩ and HΓ and the minimization problem (4) seeks
a solution in the solution space S for which (2) is satisfied. It is clear that the
problems (1) and (4) are equivalent in the sense that u ∈ S is a solution of (4) if
and only if it is also a solution, perhaps in a generalized sense, of (1).

A LSFEM can be defined by choosing a family of finite element subspaces
Sh ⊂ S parameterized by h tending to zero and then restricting the minimization
problem (4) to the subspaces. Thus, the LSFEM approximation uh ∈ Sh to the
solution u ∈ S of (1) or (4) is the solution of the problem

min
uh∈Sh

J(uh; f, g) . (5)

5Usually, h is a measure of the size of the grid use in the construction of the finite element
space.

6A least-squares functional may be viewed as an “artificial” energy that plays the same role
for LSFEMs as a bona fide physically energy plays for Rayleigh-Ritz FEMs.
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The Euler-Lagrange equations corresponding to the minimization problems (4)
and (5) are given by

seek u ∈ S such that B(u, v) = F (v) ∀ v ∈ S (6)
seek uh ∈ Sh such that B(uh, vh) = F (vh) ∀ vh ∈ Sh , (7)

respectively, where for all u, v ∈ S,

B(u, v) = (Lv,Lu)HΩ + (Rv,Ru)HΓ and F (v) = (Lv, f)HΩ + (Rv, g)HΓ . (8)

If we choose a basis {Uj}J
j=1, where J = dim(Sh), then we have that uh =∑J

j=1 cjUj for some constants {cj}J
j=1 and then the discretized problem (7) is

equivalent to the linear system
K c = f , (9)

where the elements of the matrix K ∈ <J×J and the vectors f ∈ <J and c ∈ <J

are given, for i, j = 1, . . . , J , by cj = cj ,

Kij = (LUi,LUj)HΩ + (RUi,RUj)HΓ , and fi = (LUi, f)HΩ + (RUi, g)HΓ .

The results of the following theorem follow directly from (2).

Theorem 2.1. Assume that (2) holds and that Sh ⊂ S. Then,
– the bilinear form B(·, ·) defined in (8) is continuous, symmetric, and coercive;
– the linear functional F (·) defined in (8) is continuous;
– the problem (6) has a unique solution u ∈ S that is also the unique solution

of the minimization problem (4);
– the problem (7) has a unique solution uh ∈ Sh that is also the unique solution

of the minimization problem (5);
– for some constant C > 0, we have that ‖u‖S ≤ C(‖f‖HΩ + ‖g‖HΓ) and

‖uh‖S ≤ C(‖f‖HΩ + ‖g‖HΓ) ;
– for some constant C > 0, u and uh satisfy the error estimate

‖u− uh‖S ≤ C inf
vh∈Sh

‖u− vh‖S ; (10)

– the matrix K of (9) is symmetric and positive definite.

Note that it is not assumed that the system (1) is self-adjoint or positive as
it would have to be in the Rayleigh-Ritz setting; it is only assumed that it is
well posed. Despite the generality of the system (1), the LSFEM based on (5)
recovers all desirable features of FEMs in the Rayleigh-Ritz setting. Note that
(10) shows that least-squares finite element approximations are optimally accurate
with respect to solution norm ‖ · ‖S for which the system (1) is well posed.

In defining the least-squares principle (4), we have not restricted the spaces S
and Sh to satisfy the boundary conditions. Instead, we have included the residual
Ru − g of the boundary condition in the functional J(·; ·, ·) defined in (3). Thus,
we see that LSFEMs possess a desirable feature that is absent even from standard
FEMs in the Rayleigh-Ritz setting: the imposition of boundary conditions can
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be effected through the functional and need not be imposed on the finite element
spaces.7 Notwithstanding this advantage, one can impose essential boundary con-
ditions on the space S in which case all terms in (2)–(8) involving the boundary
condition are omitted and we also set HΩ = H. Note also that since

J(uh; f, g) = ‖Luh−f‖2HΩ
+‖Ruh−g‖2HΓ

= B(uh, uh)−2F (uh)+(f, f)HΩ+(g, g)HΓ ,

the least-square functional J(uh; f, g) provides a computable indicator for the resid-
ual error in the LSFEM approximation uh. Such indicators are in widespread used
for grid adaption.

The problems (6) and (7) display the normal equation form typical of least-
squares systems; see (8). It is important to note that since L is a differential
operator, (6) involves a higher-order differential operator. We shall see that this
observation has a profound effect on how practical LSFEMs are defined.

2.1. The practicality of the straightforward LSFEM. The com-
plete recovery, in general settings, of all desirable features of the Rayleigh-Ritz
setting is what makes LSFEMs intriguing and attractive. But, what about the
practicality of the method defined by (5)? We explore this issue using examples.

2.1.1. An impractical application of the straightforward LSFEM. Con-
sider the problem

−∆u = f in Ω and u = 0 on Γ , (11)

where we assume that Ω is either a convex, Lipschitz domain or that it has a smooth
boundary. Of course, this is a problem which fits into the Rayleigh-Ritz framework
so that there is no apparent need8 to use any other type of FEM. However, let
us proceed and use the LSFEM method anyway, and see what happens. Here we
have that (2) holds with9 S = H2(Ω)∩H1

0 (Ω), H = L2(Ω), and L = −∆. We then
have that, for all u, v ∈ H2(Ω) ∩H1

0 (Ω),

J(u; f) = ‖∆u+ f‖20 , F (v) =
∫

Ω

f∆v dΩ , and B(u, v) =
∫

Ω

∆v∆u dΩ .

Note that minimizing the least-squares functional has turned the second-order
Poisson problem into a fourth-order problem.

A LSFEM is defined by choosing a subspace Sh ⊂ S = H2(Ω)∩H1
0 (Ω) and then

posing the problem (7). It is well known that in this case, the finite element space
Sh has to consist of continuously differentiable functions; this requirement greatly

7This advantage of LSFEM can be useful for imposing inhomogeneous boundary conditions,
essential boundary conditions such as Dirichlet boundary conditions for second-order elliptic
PDEs, and boundary conditions involving a particular component, e.g., the normal component,
of a vector variable.

8Inhomogeneous Dirichlet boundary conditions provide a situation in which one might want
to use LSFEMs even for the Poisson problem.

9We use standard Sobolev space notation throughout the paper. Also, in this and most of our
examples, we will be imposing the boundary condition on the solutions space S.
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complicates the construction of bases and the assembly of the matrix problem.
Furthermore, it is also well known that the condition number of the matrix problem
is O(h−4) which should be contrasted with the O(h−2) condition number obtained
through a Rayleigh-Ritz discretization of the Poisson equation. Thus, for this
problem, the straightforward LSFEM fails all three practicality tests.

Since it is also true that (2) holds with S = H1
0 (Ω) and H = H−1(Ω), one could

develop a LSFEM based on the functional J(u; f) = ‖∆u+ f‖−1 and the solution
space S = H1

0 (Ω). This approach would allow one to use a finite element space Sh

consisting of merely continuous functions so that bases may be easily constructed.
Moreover, it can be shown that because of the use of theH−1(Ω) inner product, the
condition number of the resulting matrix system is O(h−2) which is the same as for
a Rayleigh-Ritz discretization. However, the H−1(Ω) inner product is computed
by inverting the Laplacian operator which leads to the loss of property 4a and
also makes the assembly of the matrix problem more difficult. So, as it stands, the
straightforward LSFEM remains impractical for the second-order Poisson problem.

2.1.2. A practical application of the straightforward LSFEM. Consider
now the problem

−∇ · u = f and ∇× u = g in Ω and n · u = 0 on Γ . (12)

Here u ∈ S = H1
n(Ω) = {v ∈ H1(Ω) |n · v = 0 on Γ} and {f,g} ∈ H = L2

0(Ω) ×
L2

s(Ω), where L2
0(Ω) = {f ∈ L2(Ω) |

∫
Ω
f dΩ = 0}, and L2

s(Ω) = {g ∈ L2(Ω) |∇ ·
g = 0 in Ω}. We then have that (2) holds so that we may define the least-squares
functional

J(u; f,g) = ‖∇ · u + f‖20 + ‖∇ × u− g‖20 ∀u ∈ S = H1
n(Ω) (13)

that results in

B(u,v) =
∫

Ω

(
(∇ · u)(∇ · v) + (∇× u) · (∇× v)

)
dΩ ∀u,v ∈ S = H1

n(Ω)

and

F (v) =
∫

Ω

(
− f∇ · v + g · ∇ × v

)
dΩ ∀v ∈ S = H1

n(Ω) .

A LSFEM is defined by choosing a subspace Sh ⊂ S = H1
n(Ω) and then solving

the problem (7).
The LSFEM based on the functional (13) not only recovers all the good prop-

erties of the Rayleigh-Ritz setting for the problem (12), but also satisfies all three
practicality criteria. Since we merely require that Sh ⊂ H1

n(Ω), we can choose
standard finite element spaces for which bases are easily constructed. Further-
more, since the functional (13) only involves L2(Ω) inner products, the assembly
of the matrix system is accomplished in a standard manner. Finally, it can be
shown that the condition number of the matrix system is O(h−2).
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2.2. Norm-equivalence vs. practicality. Since (2) and (3) imply that

α1‖u‖2S ≤ J(u; 0, 0) ≤ α2‖u‖2S , (14)

we refer to the functional J(·; ·, ·) as being norm equivalent. This property of the
functional causes the LSFEM defined by (5) to recover all the desirable properties
of the Rayleigh-Ritz setting. However, the norms that enter the definition of
the functional J(·; ·, ·) as well as the form of the PDE system (1) can render the
resulting LSFEM impractical. Thus, in order to define a practical LSFEM, one
may have to define a least-squares functional that is not norm equivalent in the
sense of (14). We take up this issue in §3. Here, we examine the examples of §2.1
to see what guidance they give us about what makes a LSFEM practical.

2.2.1. First-order system form of the PDEs. Perhaps the most important
observation that can be made from the examples of §2.1 is that the example of
§2.1.2 involved a first-order system of PDEs and a LSFEM that allowed for the
easy construction of finite element bases (because one could work with merely
continuous finite element spaces) and resulted in matrix systems with relative good
conditioning. As a result, all modern LSFEMs are based on first-order formulations
of PDE systems. Of course, many if not most PDEs of practical interest are not
usually posed as first-order systems. Thus, the first step in defining a LSFEM
should be recasting a given PDE system into a first-order system.

Unfortunately, there is no unique way to do this. For example, the three
problems

 u +∇φ = 0 in Ω
∇ · u = f in Ω
φ = 0 on Γ




u +∇φ = 0 in Ω
∇ · u = f in Ω
∇× u = 0 in Ω
φ = 0 on Γ


 ∇ · u = f in Ω

∇× u = 0 in Ω
n× u = 0 on Γ


are all first-order systems that are equivalent to the Poisson problem (11). Each
happens to be norm equivalent, but with respect to different norms. If we assume
that in each case the boundary condition is imposed on the solutions space, we have
that, for the three problems, the space S in (2) is respectively given by H1

0 (Ω) ×
H(Ω,div), H1

0 (Ω) ×H1(Ω), and H1
τ (Ω), where H(Ω,div) = {v ∈ L2(Ω) |∇ · v ∈

L2(Ω)} and H1
τ (Ω) = {v ∈ H1(Ω) |n× v = 0 on Γ}.

2.2.2. Functionals formed using L2 norms of equation residuals. Another
observation that can be gleaned from the examples of §2.1 is that if one wants to be
able to assemble the matrix system using standard finite element techniques, then
one should use L2 norms of equation residuals in the definition of the least-squares
functional. Unfortunately, it is not always the case that the resulting least-squares
functional is norm equivalent. Let us explore this issue in more detail.

Consider the Stokes problem

−∆u +∇p = f , ∇ · u = 0 in Ω and u = 0 on Γ . (15)
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The most popular LSFEM for this problem is based on the first-order system

∇× ω +∇p = f , ω = ∇× u, ∇ · u = 0 in Ω and u = 0 on Γ (16)

that is known for obvious reasons as the velocity-vorticity-pressure formulation.
One would then be tempted to use the functional

J0(u,ω, p; f) = ‖∇ × ω +∇p− f‖20 + ‖∇ × u− ω‖20 + ‖∇ · u‖20 (17)

that involves only L2(Ω) norms of equation residuals. Indeed, this is the most
popular approach for defining LSFEM for the Stokes equations. Unfortunately,
the functional (17) is not norm equivalent. On the other hand, the functional

J−1(u,ω, p; f) = ‖∇ × ω +∇p− f‖2−1 + ‖∇ × u− ω‖20 + ‖∇ · u‖20

is equivalent to ‖u‖21 + ‖ω‖20 + ‖p‖20. So, on the one hand, the lack of norm
equivalence for the functional J0(·, ·, ·; ·) results in a loss of accuracy of the LSFEM
approximations based on that functional. On the other hand, the appearance of
the H−1(Ω) norm in the functional J−1(·, ·, ·; ·) results in an impractical LSFEM
because the matrix systems are not easily assembled.10

3. More sophisticated LSFEMs

To define the least-squares principle (4), one had to choose the pair {S, J(·; f, g)},
where S denotes a solution Hilbert space and J(·; f, g) a functional defined over S
that satisfies the norm-equivalence relation (14). We refer to the variational prin-
ciple (4) as the continuous least-squares principle.11 The straightforward LSFEM
was defined by choosing a finite element subspace Sh ⊂ S and then minimizing
the functional J(·; f, g) over Sh; see (5). We refer to the straightforward LSFEM
as the conforming LSFEM. For such LSFEMs, we obtain the error estimate (10).

Conforming LSFEMs can be generalized so that their applicability and practi-
cality are enhanced. Here, we briefly discuss some of these generalizations. We still
have in mind approximating solutions of the continuous least-squares principle (4)
or what is equivalent, solutions of the PDE system (1). We again choose a finite
element space Sh and a convex, quadratic functional Jh(·; f, g) defined over Sh.
The pair {Sh, Jh(·; f, g)} gives rise to the discrete least-squares principle

min
uh∈Sh

Jh(uh; f, g) . (18)

Since we only require that the functional Jh(·; f, g) be defined for functions in Sh,
we refer to LSFEMs constructed in this manner as discrete LSFEMs.

10A similar dilemma arises when one imposes boundary conditions through the least-squares
functional.

11Here, “continuous” refers to the fact that solutions of (4) are also solutions of the PDE system
(1). Recall also that (14) follows from the well-posedness relation (2) for the PDE system.
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The functional Jh(·; f, g) is required to satisfy the following non-restrictive as-
sumptions.

H1. There exists a discrete energy inner product (·, ·)h : Sh × Sh 7→ < and a
discrete energy norm ‖ · ‖h = (·, ·)1/2

h such that Jh(uh; 0, 0) = (uh, uh)h =
‖uh‖2h for all uh ∈ Sh.

H2. There exist bilinear forms E(·, ·) and T (·, ·) such that for all smooth func-
tions u ∈ S and all uh ∈ Sh

Jh(uh;Lu,Ru) = ‖u− uh‖2h + E(u, uh) + T (u, u) . (19)

The two assumptions are sufficient to prove the following results about solutions
of (18).

Theorem 3.1. Assume that hypotheses H1 and H2 hold for the discrete principle
{Sh, Jh(·; f, g)} and let u denote a sufficiently smooth solution of (1). Then, the
problem (18) has a unique solution uh ∈ Sh. Moreover, uh satisfies

‖u− uh‖h ≤ inf
vh∈Sh

‖u− vh‖h + sup
vh∈Sh

E(u, vh)
‖vh‖h

. (20)

A discrete least-squares functional Jh(·; f, g) will be referred to being order r-
consistent if there exists a positive number r such that for all sufficiently smooth
functions u ∈ S, the second term on the right-hand side of (20) can be bounded
from above by C(u)hr, where C(u) is a positive number whose value may depend
on u but not on h. If Jh(·; f, g) is order r-consistent, then, (20) implies that

‖u− uh‖h ≤ inf
vh∈Sh

‖u− vh‖h + C(u)hr. (21)

Theorem 3.1 shows that discrete LSFEMs can work under a minimal set of
assumptions. It also explains why LSFEMs tend to be much more robust than
their mixed FEM counterparts; unlike the inf-sup conditions that are required for
the latter type of method, defining pairs {Sh, Jh(·; f, g)} such that the assumptions
H1 and H2 are satisfied is not a difficult task.

Constructing discrete least-squares functionals. Theorem 3.1 provides es-
timates for the error with respect to the discrete norm ‖ · ‖h. Of greater interest
is estimating errors using the (mesh-independent) solution norm ‖ · ‖S associated
with the PDE problem (1). Since Sh ⊂ S, it is certainly true that ‖ ·‖S acts as an-
other norm on Sh, in addition to ‖ · ‖h. Thus, since Sh is finite dimensional, these
two norms are comparable. However, the comparability constants may depend on
h; if they do, then error estimates analogous to (20) and (21) but in terms of the
norm ‖ · ‖S will surely involve constants that depend on inverse powers of h and,
at the least, accuracy may be compromised. We conclude that hypotheses H1 and
H2 do not sufficiently connect Jh(·; f, g) to the problem (1) for us to determine
much about the properties of the error in the discrete LSFEM solution with re-
spect to ‖ · ‖S norm. Thus, we now discuss how to construct discrete least-squares
functionals so that we can get a handle on these properties.
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We assume that (2) and (14) hold for the problem (1), the least-squares func-
tional J(·; f, g), the solution space S, and the data spaces HΩ and HΓ. Let DS ,
DΩ, and DΓ denote norm-generating operators that allow us to relate the norms
on S, HΩ, and HΓ, respectively, to12 L2(Ω) norms, i.e., such that, for all u ∈ S,
f ∈ HΩ, and g ∈ HΓ, ‖u‖S = ‖DSu‖0, ‖f‖HΩ = ‖DΩf‖0, and ‖g‖HΓ = ‖DΓg‖0,Γ.
We then let

Jh(uh; f, g) = ‖Dh
Ω(Lhuh −Qh

Ωf)‖20 + ‖Dh
Γ(Rhuh −Qh

Γg)‖20 ,

where Dh
Ω, Dh

Γ, Lh, and Rh are approximations of the operators DΩ, DΓ, L, and
R, respectively, and Qh

Ω : HΩ 7→ L2(Ω) and Qh
Γ : HΓ 7→ L2(Γ) are projections. It

can be shown that Jh(uh; f, g) satisfies (19) with a specific form for E(u, vh).
The operators L and R define the problem (1) that is being solved so that the

main objective in choosing Lh and Rh is to make Jh(u; f, g) as small as possible
for the exact solutions u. An appropriate choice is to use operators that will lead
to truncation errors of order r in (19), i.e., Lh and Rh should be such that (21)
holds. On the other hand, DΩ and DΓ define the energy balance of (1), i.e., the
proper scaling between data and solution spaces. As a result, the main objective
in the choice of Dh

Ω and Dh
Γ is to ensure that the scaling induced by Jh(·; f, g) is

as close as possible to (2), i.e., to “bind” {Sh, Jh(·; f, g)} to the energy balance of
{S, J(·; f, g)}.

For norm-equivalent discrete least-squares principles, Jh(·, f, g) satisfies

α̂1‖uh‖S ≤ Jh(·; 0, 0) ≤ α̂2‖uh‖S ∀uh ∈ Sh .

If the finite element space satisfies standard inverse assumptions, minimizers of
this functional satisfy the error estimate

‖u− uh‖S ≤ C

{
inf

vh∈Sh
‖u− vh‖S +

(
inf

vh∈Sh
‖u− vh‖h + sup

vh∈Sh

E(u, vh)
‖vh‖h

)}
.

For quasi norm-equivalent discrete least-squares principles, Jh(·; f, g) satisfies

α̂h
1‖uh‖S ≤ Jh(·; 0, 0) ≤ α̂h

2‖uh‖S ,

where α̂h
1 > 0 and α̂h

2 > 0 for all h > 0 but may depend on h. Under additional
assumptions, error estimates can also be derived in this case.

4. Compatible LSFEMs

Stable mixed finite element methods (MFEMs) for the Poisson equation13 based
on first-order formulations involving a scalar variable φ and a vector (or flux)

12Recall from §2.2 that the use of L2(Ω) norms in the definition of the least-squares functional
is a key factor to making a LSFEM practical.

13Although we consider only the Poisson problem, much of what we discuss can be easily
extended to other systems of elliptic PDEs.
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variable u require the use of finite element spaces that satisfy an appropriate inf-sup
condition. It is well known that pairs of standard, nodal-based, continuous finite
element spaces fail the inf-sup condition and lead to unstable mixed methods. It is
also well known that the inf-sup condition is circumvented if one uses such simple
element pairs in LSFEMs based on L2 least-squares functionals. Ever since such
LSFEMs for first-order formulations of the Poisson equation were first considered
in [38], this fact has been deemed as an important advantage of those methods
over MFEMs. On the other hand, such LSFEMs suffer from two deficiencies.
Computationally-based observations indicate that nodal-based LSFEMs do a poor
job, compared to stable MFEMs, of conserving mass, i.e., of locally satisfying
∇ · u = 0. In addition, excepting in one special case, such methods produce
suboptimally accurate (with respect to L2(Ω) norms) flux approximations.14

Already in [38], optimal L2 error estimates for LSFEMs were established for
the scalar variable; however, there and in all subsequent analyses, optimal L2 error
estimates for the flux could not be obtained15 without the addition of a “redun-
dant” curl equation; see, e.g., [23, 24, 26, 39, 44]. Moreover, computational studies
in [32] strongly suggested that optimal L2 convergence for flux approximations
may in fact be nearly impossible to obtain if one uses pairs of standard, nodal-
based, continuous finite element spaces. A notable exception was a case studied
in [32] for which optimal L2 error estimates for both the scalar variable and the
flux were obtained when these variables were approximated by continuous nodal
spaces corresponding to a criss-cross grid. The key to proving these results was
the validity of a grid decomposition property (GDP) which was established for the
criss-cross grid in [33]. So far, the criss-cross grid remains the only known case of
a continuous, nodal-based finite element space for which the GDP can be verified.
More importantly, it was shown in [33] (see also [17]) that the GDP is necessary
and sufficient for the stability of MFEMs.

The correlation between the stability of MFEMs and the optimal accuracy of
LSFEMs, established in [32], opens up the intriguing possibility that optimal L2

accuracy for the flux may be obtainable for a LSFEM, provided that this variable is
approximated using finite element spaces that are stable for an appropriate MFEM.
Today, the stability of MFEMs is well understood, and many examples of stable
finite element pairs are known. We will show that the use of some of these spaces
in a LSFEM indeed can help improve the L2 accuracy of flux approximations.

What we conclude is that if one gives up the use of nodal-based, continuous
finite element spaces for the approximation of the flux, one can obtain optimally
accurate approximations of the flux with respect to L2(Ω) norms. While this con-
clusion may disappoint the adherents of equal-order implementations,16 our results

14The least-squares functionals in question are norm equivalent so that optimally accurate
approximations are obtained with respect to the norms for which the equivalences hold. Here,
we are interested in error estimates in weaker L2(Ω) norms for which the norm equivalence of
the least-square functional does not by itself guarantee optimal accuracy.

15A somewhat different situation exists for negative-norm-based LSFEMs for which it is known
that the L2 accuracy of the flux is optimal with respect to the spaces used; however, for such
methods, no error bound for the divergence of the flux could be established; see [18].

16Recall that the ability to approximate all variables using simple nodal finite element spaces
was one or the advantages of the FEMs in the Rayleigh-Ritz setting that we set out to recover
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do not void LSFEMs as a viable or even preferable computational alternative to
MFEMs. To the contrary, they demonstrate that a LSFEM can be designed that
combines the best computational properties of two dual MFEMs and at the same
time manages to avoid the inf-sup conditions and indefinite linear systems that
make the latter more difficult to solve. Although we reach this conclusion in the
specific context of MFEMs and LSFEMs for the Poisson problem, the idea of defin-
ing the latter type of method so that it inherits the best characteristics of a pair
of mixed methods that are related through duality may have considerably wider
application.

In the rest of this section, we focus the Poisson equation

−∆φ = f in Ω, φ = 0 on Γd, and ∂φ/∂n = 0 on Γn , (22)

where Ω denotes a bounded region in <n, n = 2, 3, with a Lipschitz continuous
boundary Γ that consists of two disjoint parts denoted by Γd and Γn.

4.1. MFEMs for the Poisson problem. So as to provide a background
for subsequent discussions concerning LSFEMs, we first consider two17 (dual)
MFEMs for the Poisson problem (22) written in the first-order form

∇ · u = f, u +∇φ = 0 in Ω, φ = 0 on Γd, u · n = 0 on Γn . (23)

4.1.1. Stable MFEMs for the Dirichlet principle. Continuous, nodal finite
element spaces built from mth degree polynomials, m ≥ 1, and whose elements
satisfy the boundary condition φ = 0 on Γn are denoted by S0

m. Note that S0
m ⊂

{ψ ∈ H1(Ω) |ψ = 0on Γd}. We denote by S1
m the space ∇(S0

m).18

A stable MFEM based on the Dirichlet principle is defined as follows: seek
ψh ∈ S0

m and uh ∈ S1
m = ∇(S0

m) such that
∫

Ω

uh · vh dΩ +
∫

Ω

∇φh · vh dΩ = 0 ∀vh ∈ S1
m∫

Ω

∇ψh · uh dΩ = −
∫

Ω

fψh dΩ ∀ψ ∈ S0
m .

(24)

Note that since S1
m = ∇(S0

m), even at the discrete level, we may eliminate the flux
approximation to obtain the equivalent discrete problem for φh ∈ S0

m∫
Ω

∇φh · ∇ψh dΩ =
∫

Ω

fψh dΩ ∀ψ ∈ S0
m (25)

that we recognize as the standard Galerkin discretization of (22). In fact, (24) and
(25) are equivalent in that whenver φh is a solution of (25), then φh and uh = ∇φh

are a solution pair for (24) and conversely. In this way we see that for (24), i.e.,

using LSFEMs.
17Because they can be derived from two classical optimization problems, we will refer to the

two methods as the discretized Dirichlet and Kelvin principles, respectively.
18Except for m = 1, S1

m is not a complete (m − 1)st degree polynomial space. However,
characterizing S1

m is not difficult and turns out to be unnecessary in practice.
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the Dirichlet principle, the required inf-sup condition is completely benign in the
sense that it can be avoided by eliminating the flux approximation uh from (24)
and solving (25) instead. The required inf-sup condition is implicitly satisfied by
the pair of spaces S0

m and S1
m = ∇(S0

m). If one insists on solving (24), then one
needs to explicitly produce a basis for S1

m; this is easily accomplished.
From either (24) or (25) one obtains, for the Dirichlet principle, that if φ ∈

Hm+1(Ω) ∩H1
d(Ω), then

‖φ−φh‖0 ≤ hm+1‖φ‖m+1 and ‖u−uh‖0 = ‖∇(φ−φh)‖0 ≤ hm‖φ‖m+1 . (26)

4.1.2. Stable MFEMs for the Kelvin principle. The BDMk and RTk spaces
on Ω are built from the individual element spaces defined with respect to a finite
element K in a partition Th of Ω

BDMk(K) = (Pk(K))n and RTk(K) = (Pk(K))n + xPk(K)

in a manner that ensures the continuity of the normal component across element
boundaries; see [20] for details and definitions of the corresponding element degrees
of freedom. Since BDMk and RTk both contain complete polynomials of degree
k, their approximation properties in L2 are the same. Since RTk also contains the
higher-degree polynomial component xPk(K), it approximates the divergence of the
flux with better accuracy than does BDMk. Note, however, that this additional
component does not help to improve the L2 accuracy of RTk spaces because it
does not increase to k+1 the order of the complete polynomials contained in RTk.

In what follows, we will denote by S2
k the RT and BDM spaces having equal

approximation orders with respect to the divergence operator, i.e., we set S2
k =

{v ∈ Hn(Ω,div) |v|K ∈ S2
k(K)}, where S2

k(K) is one of the finite element spaces
RTk−1(K) or BDMk(K) and Hn(Ω,div) = {v ∈ Hn(Ω,div) |v · n = 0 on Γn}. We
denote by S3

k the space ∇ · (S2
k). For characterizations of these spaces, see [20].

A stable MFEM based on the Kelvin principle is defined as follows: we seek
uh ∈ S2

k and φh ∈ S3
k = ∇ · (S2

k) such that
∫

Ω

uh · vh dΩ−
∫

Ω

φh∇ · vh dΩ = 0 ∀vh ∈ S2
k ,∫

Ω

ψh∇ · uh dΩ =
∫

Ω

fψh dΩ ∀ψh ∈ S3
k .

(27)

For (27), the required inf-sup condition is much more onerous than for (24) in
the sense that defining a pair of stable finite element spaces for the scalar variable
and the flux is not so straightforward a matter. We refer to [20] for a proof that
(S3

k ,S2
k) is a stable pair for the mixed finite element problem (27). Moreover, one

can show [20] that for any sufficiently regular exact solution of (23), one has

‖u− uh‖0 ≤ Chr‖u‖r

{
for 1 ≤ r ≤ k if S2

k(K) = RTk−1

for 1 ≤ r ≤ k + 1 if S2
k(K) = BDMk ,

(28)

‖∇ · (u− uh)‖0 ≤ Chr‖∇ · u‖r for 1 ≤ r ≤ k (29)
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and
‖φ− φh‖0 ≤ Chr(‖φ‖r + ‖u‖r) for 1 ≤ r ≤ k. (30)

It is important to note that if one uses continuous, nodal based finite element
spaces for both the scalar variable and the flux, then (24) and (27) are identical
discrete systems. It is well known that this leads to unstable approximations, so
that one cannot use such pairs of finite element spaces in the MFEMs (24) or (27).

4.1.3. The grid decomposition property. The following result establishes the
GDP for the spaces S2

k used for the discretized Kelvin principle (27);19 for a proof,
see [14].

Theorem 4.1. For every uh ∈ S2
k , there exist wh, zh in S2

k such that

uh = wh + zh, ∇ · zh = 0,
∫

Ω

wh · zh dΩ = 0, and

‖wh‖0 ≤ C
(
‖∇ · uh‖−1 + h‖∇ · uh‖0

)
.

(31)

It was shown in [33] that the GDP, i.e., (31), along with the relation S3
k =

∇ · (S2
k), are necessary and sufficient for the stability of the discretized Kelvin

principle (27).

4.2. LSFEMs for the Poisson problem. A LSFEM for the Poisson
problem (22) can be defined based on the quadratic functional

J(φ,u; f) = ‖∇ · u− f‖20 + ‖∇φ+ u‖20 (32)

and the least-squares principle

min
(φ,u)∈H1

d(Ω)×Hn(Ω,div)
J(φ,u; f) . (33)

Note that we have used the first-order form (23) of the Poisson problem and that we
use L2(Ω) norms to measure the equation residuals. Also, we require the functions
in the spaces H1

d(Ω) and Hn(Ω,div) to satisfy the boundary conditions φ = 0 on
Γd and u ·n = 0 on Γn, respectively. The Euler-Lagrange equations corresponding
to (33) are given by: seek {φ,u} ∈ H1

d(Ω)×Hn(Ω,div) such that

B({φ,u}, {ψ,v}) = F ({ψ,v}) ∀ {ψ,v} ∈ H1
d(Ω)×Hn(Ω,div) , (34)

where

B({φ,u}, {ψ,v}) =
∫

Ω

(∇ · u)(∇ · v) dΩ +
∫

Ω

(∇φ+ u) · (∇ψ + v) dΩ (35)

and
F ({ψ,v}) =

∫
Ω

f(∇ · v) dΩ . (36)

19An analogous GDP can be defined in the context of the finite element spaces S0
m used for

the discretized Dirichlet principle (24) but it is trivially satisfied.
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To define a LSFEM, we restrict (33) to the conforming subspace S0
m × S2

k ⊂
H1

d(Ω) × Hn(Ω,div) or, equivalently, restrict (34) to those subspaces to obtain
the discrete problem: seek {φh,uh} ∈ S0

m × S2
k such that

B({φh,uh}, {ψh,vh}) = F ({ψh,vh}) ∀ {ψh,vh} ∈ S0
m × S2

k . (37)

The next theorem states that the functional (32) is norm equivalent.20 For a proof,
see any of [21,23,24,44].

Theorem 4.2. There exist positive constants α1 and α2 such that for any {φ,u} ∈
H1

d(Ω)×Hn(Ω,div),

α1

(
‖φ‖21 + ‖u‖2H(Ω,div)

)
≤ J(φ,u; 0) ≤ α2

(
‖φ‖21 + ‖u‖2H(Ω,div)

)
. (38)

Thus, the LSFEM defined through (37) is an example of a LSFEM that recovers
all the desirable properties of the Rayleigh-Ritz setting, except that by using the
finite element spaces S0

m and S2
k , we have forced ourselves to not use continuous,

nodal-based finite element spaces for the flux approximation.21 Because we are
using finite element spaces that are compatible for the MFEMs (24) and (27), we
refer to the LSFEM defined by (37) as a compatible LSFEM.

4.2.1. Error estimates in H1(Ω) × H(Ω, div). We now review the conver-
gence properties of LSFEMs for the Poisson equation with respect to the H1(Ω)×
H(Ω,div) norm. For a proof of the following theorem, see [14].

Theorem 4.3. Assume that the solution {φ,u} of (34) satisfies {φ,u} ∈ H1
d(Ω)∩

Hm+1(Ω) × Hn(Ω,div) ∩ Hk+1(Ω) for some integers k,m ≥ 1. Let {φh,uh} ∈
S0

m × S2
k be the solution of the least-squares finite element problem (37). Then,

there exists a constant C > 0 such that

‖φ− φh‖1 + ‖u− uh‖H(Ω,div) ≤ C
(
hk‖u‖k+1 + hm‖φ‖m+1

)
. (39)

The error estimate (39) remains valid if u is approximated in the continuous,
nodal-based finite element space (Pk(Ω))n.

Theorem 4.3 shows that the errors in uh and φh are equilibrated when k = m
and that (S0

k ,S2
k) has the same asymptotic accuracy in the norm of H1(Ω) ×

H(Ω,div) as the C0 pair (S0
k , (Pk)n). For this reason, in the implementation of

the LSFEM, one usually chooses the nodal-based pair (S0
k , (Pk)n) because it is

easier to implement. Indeed, the ability to use equal-order interpolation has been
often cited as a primary reason for choosing to use LSFEMs. Nevertheless, the
pair is not flawless because optimal L2 norm errors for the flux approximation
have proven impossible to obtain without using the very restrictive criss-cross
grid or augmenting (23) with an additional redundant curl constraint equation.22

20In the theorem, we have that ‖u‖H(Ω,div) = (‖u‖20 + ‖∇ · u‖20)1/2.
21We could, of course, use such spaces for the flux approximation, but, as indicated previously,

we would then not be able to obtain optimal error estimates with respect to L2(Ω) norms.
22The redundant curl constraint ∇×u = 0, first introduced in the least-squares finite element

setting in [26] and subsequently utilized by many others (see, e.g., [21, 23, 24, 39]), renders the
least-squares functional norm-equivalent with respect to the H1(Ω)×H1(Ω) norm but, in some
situations, may unduly restrict the range of the data and should be avoided.
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Also, as we have already mentioned, numerical studies in [32] indicate that the L2

convergence of the flux is indeed suboptimal with such finite element spaces.
We will see that if the nodal approximation of the flux is replaced by an approx-

imation in S2
k , it may be possible to recover optimal L2 convergence rates without

adding the curl constraint. As in [32], the key to this is the GDP.

4.2.2. Error estimates in L2. We assume that the solution of the problem

−∆ψ = η in Ω, ψ = 0 on Γd,
∂ψ

∂n
= 0 on Γd

satisfies the regularity estimate ‖ψ‖s+2 ≤ C‖η‖s for s = 0, 1 and for all η ∈ Hs(Ω).
This is needed since L2 error estimates are based on duality arguments.

L2 error estimates for the scalar variable.

Theorem 4.4. Assume that the regularity assumption is satisfied, and assume that
the solution (φ,u) of (34) satisfies (φ,u) ∈ H1

d(Ω) ∩ Hm+1(Ω) ×
Hn(Ω,div) ∩ Hk+1(Ω) for some integers k,m ≥ 1. Let (φh,uh) ∈ S0

m × S2
k be

the solution of the least-squares finite element problem (37). Then, there exists a
constant C > 0 such that ‖φ− φh‖0 ≤ C(hk+1‖u‖k+1 + hm+1‖φ‖m+1).

For a proof of this theorem, see [14]. The optimal L2 error bound of Theorem
4.4 for the scalar variable does not require that the finite element space for flux
approximations satisfy (31), i.e., the GDP. Thus, it remains valid even when con-
tinuous, nodal-based finite element spaces are used for the flux approximations, a
result first shown in [38]. On the other hand, we will see that the GDP is needed
if one wants to improve the L2 accuracy of the flux.

L2 error estimate for the flux. The L2 error estimates for approximations to
the flux depend on whether S2

k represents the RTk−1 or the BDMk family. To this
end, we have the following result whose proof may be found in [14].

Theorem 4.5. Assume that the hypotheses of Theorem 4.4 hold with k = m = r.
Then, there exists a constant C > 0 such that

‖u− uh‖0 ≤ C

{
hr(‖u‖r+1 + ‖φ‖r+1) if S2

r (Ω) = RTr−1

hr+1(‖u‖r+1 + ‖φ‖r+1) if S2
r (Ω) = BDMr .

(40)

Consider, for example, the lowest-order case for which r = 1, S0
1 (Ω) = P1,

and S2
1 (Ω) is either RT0 or BDM1. If the least-squares finite element method is

implemented with RT0 elements, (40) specializes to

‖u− uh‖0 ≤ h(‖u‖2 + ‖φ‖2) .

If instead we use BDM1 elements, we then obtain the improved error bound

‖u− uh‖0 ≤ h2(‖u‖2 + ‖φ‖2) .
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4.3. Interpretation of results and mass conservation. We have
seen that a LSFEM method implemented using equal-order, continuous, nodal-
based finite element spaces approximates the scalar variable with the same accuracy
(with respect to both H1(Ω) and L2(Ω) norms) as the Galerkin method (25) (or,
equivalently, the mixed method (24) for the Dirichlet principle. However, the
approximation properties of the Kelvin principle (27) are only partially inherited
in the sense that the accuracy in the approximation to the divergence of the flux
is recovered, but the accuracy in the flux approximation itself may be of one order
less. This should not be too much of a surprise because continuous, nodal-based
finite elements provide stable discretization only for the Dirichlet principle (with
the exception of the criss-cross grid; see [32]). While least-squares minimization is
stable enough to allow for the approximation of scalar variables and the flux by
equal-order, continuous, nodal-based finite element spaces, it cannot completely
recover from the fact that such spaces are unstable for the Kelvin principle.

The key observation from §4.2.2 is that a LSFEM can inherit the best properties
of both the discretized Dirichlet principle (24) and Kelvin principle (27), provided
the scalar variable and the flux are approximated by finite element spaces that
are stable with respect to these two principles, respectively. Then, least-squares
finite element solutions recover the accuracy of the Dirichlet principle for the scalar
variable and the accuracy of the Kelvin principle for the flux. In a way, we see
that, implemented in this particular manner, the LSFEM represents a balanced
mixture of the two principles. In [16], an explanation of this observation using
the apparatus of differential form calculus is provided as are the results of several
illustrative computational experiments.

Unlike LSFEMs based on the use of continuous, nodal-based finite element
spaces for all variables, it can be shown that through a simple local post-processing
procedure, the compatible LSFEM inherits the local mass conservation properties
of the discretized Kelvin principle (27); see [16] for details.

5. Alternative LSFEMs

The LSFEMs considered so far follow variants of the template established in §2:
first, spaces S, HΩ, and HΓ that verify (2) are determined, then a least-squares
functional (3) is defined by measuring equation residuals in the norms of HΩ and
HΓ and, finally, a LSFEM is obtained by minimizing (3) over a finite-dimensional
subspace Sh of S. Here, we provide examples of methods that, while still relying
on least-squares notions, deviate in more significant ways from that template.

5.1. Collocation LSFEMs. The least-squares optimization steps (3) and
(4) precede the discretization step (5). In the broadest sense, collocation LSFEM
(CLSFEM) are methods [25,31,41] that reverse the order of these two steps. They
are also known as point least-squares or overdetermined collocation methods.

Let {Uj(x)}J
j=1 denote a basis for a finite element space. We seek an ap-

proximate solution of (1) of the form u(x) ≈ ûh(x) =
∑J

j=1 cjUj(x), where c =
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(c1, c2, . . . , cJ) is a vector of unknown coefficients. Collocation points {xi}M1
i=1 ⊂ Ω

and {xi}M
i=M1+1 ⊂ Γ are then chosen in such a way that the corresponding point

residuals Lûh(xi)− f(xi) and Rûh(xi)− g(xi) are well defined. Then, a CLSFEM
is defined by minimizing, over c ∈ <J , the discrete functional

Jc(c; f, g) =
M1∑
i=1

αi

(
Lûh(xi)− f(xi)

)2

+
M∑

i=M1+1

βi

(
Rûh(xi)− g(xi)

)2

The weights αi and βi can be used to adjust the relative importance of the terms
in the functional. The necessary condition for the minimization of Jc(·; f, g) gives
rise to an M × J linear system Ac = b. If M = J , then the method reduces to a
standard collocation method. IfM > J , the solution c is obtained in a least-squares
sense by solving the normal equations AT Ac = AT b. If the collocation points and
weights correspond to a quadrature rule, then the CLSFEM is equivalent to an
LSFEM in which integrals are approximated by a quadrature rule.

Since only a finite set of collocation points belonging to the domain Ω need
be specified, collocation LSFEMs are attractive for problems posed on irregularly
shaped domains; see [41]. On the other hand, since the normal equations tend to
become ill-conditioned, such methods require additional techniques such as scaling
or orthonormalization in order to obtain a reliable solution; see [31].

5.2. Discontinuous LSFEMs. The LSFEMs of §2, 3, and 4 are defined
using a conforming finite element subspace Sh of the solution space S. Discon-
tinuous LSFEMs (DLSFEMs) are an alternative approach that use finite element
subspaces of L2(Ω) that consist of piecewise polynomial functions that are not
constrained by inter-element continuity requirements. The degrees of freedom on
each element can be chosen independently of each other and the elements can have
hanging nodes. These features offer great flexibility in implementing adaptive
methods because first, resolution on each element can be adjusted as needed and
second, new elements can be added by simple subdivisions of existing elements.

In general, the least-squares problem (4) cannot be restricted to a discon-
tinuous space Sh because it is not a proper subspace of S. To take advantage
of discontinuous spaces, it is necessary to modify (3) so that it is well-defined
on the “broken” (with respect to a partition Th of the domain Ω) data space
S = {u ∈ L2(Ω) |u ∈ S(K) ∀K ∈ Th}. The first DLSFEMs appeared in [2, 22] as
least-squares formulations for interface and transmission problems for the Poisson
equation. We follow [22], where a DLSFEM is developed for the problem∇ · (aiui) = fi and ui +∇φi = 0 in Ωi, i = 1, 2

φi = 0 on Γi,d and ui · ni = 0 on Γi,n i = 1, 2
φ1 = φ2 and a1u1 · n1 + a2u2 · n2 = 0 on Γ12

(41)

that is a first-order formulation of a transmission problem for the Poisson equa-
tion.23 Here, Ω1 and Ω2 are two24 open subsets of Ω such that Ω1 ∪ Ω2 = Ω and

23The functions a1 and a2 denote a “media property” that is discontinuous across Γ12.
24The generalization to more than two subdomains is straightforward.
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Ω1 ∩ Ω2 = ∅. The set Γ12 = Ω1 ∪ Ω2 is the interface between the two subdomains
and Γi,d = Γd ∩ Ωi and Γi,n = Γn ∩ Ωi, i = 1, 2.

In the conforming case, a LSFEM for the Poisson equation was defined by
using the functional (32) and conforming subspaces of the solution space S =
H1

d(Ω) × Hn(Ω,div). For the problem (41), we instead use the “broken” (with
respect to the partition {Ω1,Ω2}) solution space S = H1

d(Ω)×Hn(Ω,div), where

H1
d(Ω) = {φ̃ = {φ1, φ2} | φi ∈ H1

d(Ωi), i = 1, 2} for the scalar variable
Hn(Ω,div) = {ũ = {u1,u2} | ui ∈ Hn(Ωi,div), i = 1, 2} for the flux.

To define a DLSFEM, we also need to replace (32) by a least-squares functional that
can be minimized over S. Of course, we also want a functional whose minimizer is
a solution of (41). A functional with the desired properties is given by (see [22])

J12(φ̃, ũ; f1, f2) =
2∑

i=1

(
‖∇ · (aiui)− fi‖20,Ωh

i
+ ‖ui +∇φi‖20,Ωh

i

)
+ ‖φ1 − φ2‖21/2,Γ12

+ ‖a1u1 · n1 + a2u2 · n2‖2−1/2,Γ12
.

(42)

Interface terms in (42) are treated in exactly the same way as one would im-
pose weak Dirichlet and Neumann conditions, respectively. To obtain a practical
method, they are replaced by weighted L2 norms on Γ12. Choosing Sh ⊂ S com-
pletes the formulation of the DLSFEM; see [22] for further details.

The Treffetz element least-squares method [42, 46] can be viewed as a variant
of the DLSFEM. The term “Treffetz elements” usually refers to methods that
use approximation spaces consisting of piecewise analytic solutions of the PDE.
Such spaces provide highly accurate approximations of the broken solution space
S so that they also require functionals that are well-posed with respect to that
space. Given a Treffetz element space, it is a trivial matter to use (42) to define a
DLSFEM; see [42,46] for further details.

6. Open problems in LSFEM

We close with a brief discussion of some of the open problems that exist in the
theory and application of LSFEMs.

6.1. Hyperbolic PDEs. Recovery of the Rayleigh-Ritz properties by LS-
FEMs relies on the existence of Hilbert spaces that validate the bounds (2) for (1).
Such bounds are natural for elliptic PDEs and can be derived for any such PDE by
using the Agmon-Douglis-Nirenberg theory [1]. On the other hand, for hyperbolic
PDEs such bounds are not so natural, partly because they admit data in Lp spaces
and their solutions may have contact discontinuities and shock waves.

Recall that (7) can be viewed as a Galerkin method applied to a higher-order
PDE. As a result, LSFEMs for hyperbolic equations designed using a Hilbert space
setting are equivalent to a Galerkin discretization of a degenerate elliptic PDE. The
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result is a LSFEM that will have excellent stability properties but which will smear
shocks and discontinuities; see [11] for numerical examples.

To illustrate some of the pitfalls that can be encountered with hyperbolic PDEs,
it suffices to consider the simple linear convection-reaction problem

∇ · (bu) + cu = f in Ω and u = g on Γ− , (43)

where b is a given convection vector, c(x) is a bounded measurable function on
Ω, and Γ− = {x ∈ Γ |n(x) · b(x) < 0} is the inflow part of the boundary Γ.
A straightforward L2(Ω) norm-based least-squares principle for (43) is defined by
minimizing the functional

J(v; f, g) = ‖∇ · (bv) + cv − f‖20 + ‖v − g‖20,Γ− (44)

over the Hilbert space S = {u ∈ L2(Ω) | Lu = ∇ · (bv) + cv ∈ L2(Ω)}. Then,
following theorem can be obtained [10].

Theorem 6.1. Assume that Γ− is non-characteristic and c+ 1
2∇ · b ≥ σ > 0 for

some constant σ. Then, J(v; 0, 0) = ‖∇ · (bv)+ cv‖20 + ‖v‖20,Γ−
is equivalent to the

graph norm ‖v‖2S = ‖v‖20 + ‖Lv‖20. For every f ∈ L2(Ω) and g ∈ L2(Γ−), (44) has
a unique minimizer u ∈ S and for that u we have that J(u; 0, 0) ≤ ‖f‖0 + ‖g‖20,Γ−

.

This theorem shows that if the data belongs to L2, all the prerequisites needed to
define a LSFEM are fulfilled. We can proceed as in §2 and define a method in the
most straightforward way by restricting the Euler-Lagrange equation correspond-
ing to the minimization of (44) to a finite dimensional subspace Sh ⊂ S.

However, the convection-reaction problem (43) is meaningful even if the data25

f belongs only to the Banach space L1(Ω). In this case, proper solution and data
spaces for (43) are given by S = {v ∈ L1(Ω) |∇ · (bv) ∈ L1(Ω)} and H = L1(Ω),
respectively. One can show [35] that L is an isomorphism S 7→ H and so, instead
of (2), we have a similar bound but in Banach spaces: α1‖u‖S ≤ ‖Lu‖H ∀u ∈ S.

Now, consider the unconstrained minimization problem associated with the
spaces S and H:

min
u∈S

J1(u; f), where J1(u; f) = ‖Lu− f‖L1(Ω) =
∫

Ω

|Lu− f | dΩ . (45)

For our model equation (43), this is the “correct” minimization problem that,
restricted to Sh ⊂ S, will have solutions that do not smear discontinuities. This
fact has been recognized independently in [40] and more recently in [35]. In [35], it
is also shown that under some reasonable assumptions on Sh, the discrete problem

min
uh∈Sh

J1(uh; f) (46)

has at least one global minimizer, no local minimizers, and a solution that satisfies
the stability bound ‖uh‖S ≤ C‖f‖H .

25We assume now that g = 0.
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We can view (45) as yet another example of the conflict between practicality
and optimality. In this case, however, the practicality issue is much more severe
because (45) is not differentiable, we cannot write a first-order optimality condi-
tion, and the discrete problem (46) does not give rise to a matrix problem. This
is the chief reason that so far there are only two examples [35, 40] of FEMs for
(43) based on the L1 optimization problem (45). In [35], the minimizer of (46) is
approximated by solving a sequence of regularized L1 optimization problems that
are differentiable. The method of [40] uses a sequence of more conventional L2

least-squares approaches, but defined using an adaptively weighted L2 inner prod-
uct. The weights are used to weaken contributions to the least-squares functional
from elements that contain solution discontinuities.

At this point, there is very limited experience with solving hyperbolic PDEs by
minimizing functionals over Banach spaces. For problems with non-smooth data,
computational experiments with the methods of [35] and [40] show that they are
superior to LSFEMs defined through the minimization of (44); most notable is their
ability to provide sharp discontinuity profiles without over- and under-shooting.
A series of experiments in [35] also points strongly towards a possibility that the
numerical solutions actually obey a maximum principle on general unstructured
grids and that the L1-based algorithm seems to be able to select viscosity solutions.
However, at present, there are no mathematical confirmations of these facts, nor
is it known whether such algorithms for hyperbolic conservation laws are able to
provide accurate shock positions and speeds.

Despite the promise of L1 optimization techniques, the state of LSFEMs for
hyperbolic problems is far from satisfactory. Straightforward L2 norm-based LS-
FEMs are clearly not the most appropriate as they are based on the “wrong”
stability estimate for the problem. L1 norm-based techniques give far better re-
sults but are more complex and, in the case of [35], require the solution of nonlinear
optimization problems. Thus, the jury is still out on whether or not it is possible
to define a simple, robust, and efficient LSFEMs for hyperbolic problems that will
be competitive with specially designed, upwind schemes employing flux limiters.

6.2. Mass conservation. In §4 it was shown that LSFEMs for the Poisson
equation can be implemented in a way that allows them to inherit the best com-
putational properties of MFEMs for the same problem. In particular, it is possible
to define a LSFEM for (23) so that the approximation locally conserves mass.

Currently, the methods in §4 are the only such example. Achieving local mass
conservation in LSFEMs for incompressible, viscous flows remains an important
open problem. All existing LSFEMs for incompressible, viscous flows conserve
mass only approximately so that ‖∇ ·uh‖0 = O(hr), where r is the approximation
order of the finite element space. For low-order elements, which are among the most
popular and easy to use elements, LSFEMs have experienced severe problems with
mass conservation. For LSFEMs based on the velocity-vorticity-pressure system
(16), these problems were first identified in [27] where also a solution was proposed
that combines least-squares principles and Lagrange multipliers to achieve element-
wise mass conservation. Then, the resulting restricted LSFEM treats the continuity



22 P. Bochev and M. Gunzburger

the equation ∇·u = 0 as an additional constraint that is enforced on each element
by a Lagrange multiplier. The method achieves remarkable local conservation but
compromises the main motivation underlying LSFEMs: to recover a Rayleigh-Ritz
setting for the PDE. In particular, property 4c does not hold.

An alternative to exact local conservation is an LSFEM with enhanced total
mass conservation. This can be effected by increasing the importance of the conti-
nuity residual by using weights. A weighted LSFEM for (16) using the functional

JW (ω, p,u) = ‖∇ × ω +∇p− f‖20 +
∑
K∈Th

h2
K
(
W‖∇ · u‖20,K + ‖∇ × u− ω‖20,K

)
was studied in [28] where numerical studies showed that fairly a small weight, e.g.,
W = 10, helps to significantly improve total mass conservation.

Thus, for the Stokes problem, at present there are methods that either recover
local mass conservation but forfeit some important advantages of the Rayleigh-
Ritz settings or retain all those advantages but can at best provide improved
global conservation. It is of interest to explore whether or not the ideas of §4 can
be extended to develop compatible LSFEMs for viscous flows that retain all the
Rayleigh-Ritz advantages and at the same time locally conserve mass.

6.3. LSFEMs for nonlinear problems. Consider the nonlinear version
of (1)

Lu+ G(u) = f in Ω and Ru = g on Γ , (47)

where G(u) is a nonlinear term. Formally, a least-squares principle for (1) can be
easily extended to handle (47) by modifying (4) and (3) to

min
u∈S

JG(u; f, g), where JG(u; f, g) = ‖Lu+ G(u)− f‖2HΩ
+ ‖Ru− g‖2HΓ

(48)

and then define a LSFEM by restricting (48) to a family Sh ⊂ S. While the
extension of LSFEMs to (47) is trivial, its analysis is not and remains one of
the open problems in LSFEMs. Compared with the well-developed mathematical
theory for linear elliptic problems [2,13,18,21,23,24,26,32,38], analyses of LSFEMs
for nonlinear problems are mostly confined to the Navier-Stokes equations [7–9].

It can be shown that the Euler-Lagrange equation associated with the least-
squares principle (48) for the Navier-Stokes equations has the abstract form

F (λ,U) ≡ U + T ·G(λ,U) = 0 , (49)

where λ is the Reynolds number, T is a least-squares solution operator for the
associated Stokes problem, and G is a nonlinear operator. As a result, the corre-
sponding discrete nonlinear problem has the same abstract form

Fh(λ,Uh) ≡ Uh + Th ·G(λ,Uh) = 0 , (50)

where Th is an approximation of T . The importance of (50) is signified by the fact
that discretization in (50) is introduced solely by means of an approximation to
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the linear operator T in (49). As a result, under some assumptions, one can show
that the error in the nonlinear approximation defined by (50) is of the same order
as the error in the least-squares solution of the linear Stokes problem.

One of the obstacles in extending this approach to a broader class of nonlinear
problems is that after the application of a least-squares principle, the (differentia-
tion) order of the nonlinear term may change.
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